Exploring subfields of AI relevant to journalism

Many academic papers about artificial intelligence are focused on a narrow domain or one specific application. In trying to get a grip on the uses of AI in the field of journalism, often we find that one paper bears no similarity to the next, and that makes it hard to talk about AI in journalism comprehensively or in a general sense. We also find that large sections of some papers in this area are more speculative than practical, discussing what could be more than what exists today.

In this post I will summarize two papers that are focused on uses of AI in journalism that do actually exist. These two papers also do a good job of putting into context the disparate applications relevant to journalism work and journalism products.

In the first paper, Artificial Intelligence in News Media: Current Perceptions and Future Outlook (2022; open access), the authors examined 102 case studies from a dataset compiled at JournalismAI, an international initiative based at the London School of Economics. They classified the projects according to seven “major areas” or subfields of AI:

  1. Machine learning
  2. Natural language processing (NLP)
  3. Speech recognition
  4. Expert systems
  5. Planning, scheduling, and optimization
  6. Robotics
  7. Computer vision

I could quibble with the categories, especially as systems in categories 2, 3, 5, 6 and 7 often rely on machine learning. The authors did acknowledge that planning, scheduling, and optimization “is commonly applied in conjunction with machine learning.” They also admit that some of the projects incorporated more than one subfield of AI.

According to the authors, three subfields were missing altogether from the journalism projects in their dataset: expert systems, speech recognition, and robotics.

Screenshot shows 12 rows of the Journalism AI dataset with topic tags
Screenshot of the JournalismAI dataset (partial)

Use of machine learning was common in projects related to increasing users’ engagement with news apps or websites, and in efforts to retain subscribers. These projects included recommendation engines and flexible paywalls “that bend to the individual reader or predict subscription cancellation.”

Uses of computer vision were quite varied. Several projects used it with satellite imagery to detect changes over time. The New York Times used computer vision algorithms for the 2020 Summer Olympics to analyze and compare movements of athletes in events such as gymnastics. Reuters used image recognition to enhance in-house searches of the company’s vast video archive (note, speech-to-text transcripts for video was also part of this project). More than one news organization is using computer vision to detect fake images.

Interestingly, automated stories were categorized as planning, scheduling, and optimization rather than as NLP. It’s true that the day-to-day automation of various reports on financial statements, sporting events, real estate sales, etc., across a range of news organizations is handled with story templates — but the language in each story is adjusted algorithmically, and those algorithms have come at least in part from NLP.

The authors noted that within their limited sample, few projects involved social bots. “Most of the bots that we researched were news bots that write stories,” they said. It is true that “social bots such as Twitter bots do not necessarily use AI” — but in that case, the bot is going to use a rule-based system or de facto expert system, a category of AI the authors said was missing from the dataset.

Most of the projects in the dataset relied on external funding, and mainly from one source: Google’s Digital News Innovation Fund grants.

One thing I like about this research is that it does not conflate artificial intelligence and data journalism — which in my view is a serious flaw in much of the literature about AI in journalism. You might notice that in the foregoing summary, the only instances of AI contributing information to stories involved use of satellite imagery.

The authors of the article discussed above are Mathias-Felipe de-Lima-Santos of the University of Navarra, Spain, and Wilson Ceron of the Federal University of São Paulo, Brazil.

What about using AI as part of data journalism?

In an article published in 2019, Making Artificial Intelligence Work for Investigative Journalism, Jonathan Stray (now a visiting scholar at the UC Berkeley Center for Human-Compatible AI) authoritatively debunked the myth that data journalists are routinely using AI (or soon will be), and he explained why. Two very simple reasons bear mention at the outset:

  • Most journalism investigations are unique. That precludes the time, expense and expertise required to develop an AI solution or tool to aid in one investigation, because it likely would not be usable in any other investigation.
  • Journalists’ salaries are far lower than the salaries of AI developers and data scientists. A news organization won’t hire AI experts to develop systems to aid in journalism investigations.

Data journalists do use a number of digital tools for cleaning, analyzing, and visualizing data, but it must be said that almost all of these tools are not part of what is called artificial intelligence. Spreadsheets, for example, are essential in data journalism but a far cry from AI. Stray points to other tools — for extracting information from digitized documents, or finding and eliminating duplicate records in datasets (e.g. with Dedupe.io). The line gets fuzzy when the journalist needs to train the tool so that it learns the particulars of the given dataset — by definition, that is machine learning. This training of an already-built tool, however, is immensely simpler than the thousands or even millions of training epochs overseen by computer scientists who develop new AI systems.

Stray clarifies his focus as “the application of AI theory and methods to problems that are unique to investigative reporting, or at least unsolved elsewhere.” He identifies these categories for successful uses of AI in journalism so far:

  • Document classification
  • Language analysis
  • Breaking news detection
  • Lead generation
  • Data cleaning

Stray’s journalism examples are cases covered previously. He acknowledges that the “same small set of examples is repeatedly discussed at data journalism conferences” and this “suggests that there are a relatively small number of cases in total” (page 1080).

Supervised document classification is a method for sorting a large number of documents into groups. For investigative journalists, this separates documents likely to be useful from others that are far less likely to be useful; human examination of the “likely” group is still needed.

By language analysis, Stray means use of natural language processing (NLP) techniques. These include unsupervised methods of sorting documents (or forum comments, social media posts, emails) into groups based on similarity (topic modeling, clustering), or determining sentiment (positive/negative, for/against, toxic/nontoxic), or other criteria. Language models, for example, can identify “named entities” such as people or “nationalities or religious or political groups” (NORP) or companies.

Breaking news detection: The standard example is the Reuters Tracer system, which monitors Twitter and alerts journalists to news events. The advantage is getting a head start of as much as 18 minutes over other news organizations that will cover the same event. I am not sure whether any other organization has ever developed a comparable system.

Lead generation is not exactly story discovery but more like “Here’s something you might want to investigate further.” It might pan out; it might not. Stray’s examples here are a bit weak, in my opinion, but the one for using face recognition to detect members of the U.S. Congress in photos uploaded by the public does set the imagination running.

Data cleaning is always necessary, usually tedious, and often takes more time than any other part of the reporting process. It makes me laugh when I hear data-science educators talk about giving their students nice, clean datasets, because real data in the real world is always dirty, and you cannot analyze it properly until it has been cleaned. Data journalists talk about this incessantly, and about reliable techniques not only for cleaning data but also for documenting every step of the process. Stray does not provide examples of using AI for data cleaning, but he devotes a portion of his article to this and data “wrangling” as areas he deems most suitable for AI solutions in the future.

When documents are extremely diverse in format and/or structure (e.g. because they come from different entities and/or were created for different purposes), it can be very difficult to extract data from them in any useful way (for example: names of people, street addresses, criminal charges) unless humans do it by hand. Stray calls it “a challenging research problem” (page 1090). Another challenge is linking disparate documents to one another, for which the ultimate case to date is the Panama Papers. Network analysis can be used (after named entities are extracted), but linkages will still need to be checked by humans.

Stray also (quite interestingly) wrote about what would be needed if AI systems were to determine newsworthiness — the elusive quality that all journalists swear they can recognize (much like Supreme Court Justice Potter Stewart’s famous claim about obscenity).

Conclusions

From my reading so far, I think there are two major applications of AI in the journalism field actually operating at present: production of automated news stories (within limited frameworks), and purpose-built systems for manipulating the content choices offered to users (recommendations and personalization). Automated stories or “robot journalism” have been around for at least seven or eight years now and have been written about extensively.

I’ve read (elsewhere) about efforts to catalog and mine gigantic archives of both video and photographs, and even to produce fully automated videos with machine-generated voiceover narration, but I think those are corporate strategies to extract value from existing resources rather than something intended to produce new journalism in the public interest. I also think those efforts might be taking place mainly outside the journalism area by now.

One thing that’s clear: The typical needs of an investigative journalism project (the highest-cost and possibly most important kind of journalism) are not easily solved by AI, even today. In spite of great advances in NLP, giant collections of documents must still be acquired piecemeal by humans, and while NLP can help with some parts of extracting valuable information from documents, in the end these stories require a great deal of human labor and time.

Another area not addressed in either of the two articles discussed here is verification and fact-checking. The ClaimReview Project is one approach to this, but it is powered by human fact-checkers, not AI. See also the conference paper The Quest to Automate Fact-Checking, presented at the 2015 Computation + Journalism Symposium.

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

Research scholarship about AI and journalism

I’ve been reading a lot about artificial intelligence and journalism lately. Yesterday I read two studies that examine the scholarly literature in this area. Both were published in 2021.

The first, Artificial intelligence and journalism: Systematic review of scientific production in Web of Science and Scopus (2008-2019), examined 209 articles published from January 2008 to December 2019. The researchers used these search terms: robot journalism, automated journalism, algorithm journalism, computational journalism, augmented journalism, artificial journalism, and high tech journalism. They also searched for simply journalism and artificial intelligence.

From the 209 articles, they identified these additional themes: audience, authorship, big data, chatbots, credibility, data journalism, ethics, events detection, fact-checking, online comments, personalization, production, social media, technologies, and theory.

The number of articles published per year has increased sharply since 2015 (as you might expect). Sixty-one of the items were published in 2019, the final year in this study. The researchers also counted countries, institutions, citations, authors, and looked at collaborations, noting especially that collaboration among authors from different countries has been rare. One-third of the articles are from the U.S., while Germany, Ireland, Spain, and the U.K. combined account for more than one-third. The journal Digital Journalism had published the most articles (36).

Chart by Calvo Rubio & Ufarte Ruiz (2021) shows number of publications per year, 2008–2019
Chart above by Calvo Rubio & Ufarte Ruiz (2021) shows number of publications per year, 2008–2019.

Keywords were supplied for 80 percent of the publications. Analysis identified more than 1,000 distinct keywords. These were the most common, in order starting with most-used:

  1. Computational journalism
  2. Automated journalism
  3. Robot journalism
  4. Journalism
  5. Artificial intelligence
  6. Data journalism
  7. Algorithms
  8. Automation
  9. Algorithmic journalism
  10. Social media
  11. Big data

Other commonly seen concepts included: bots, fact checking, innovation, and natural language generation (NLG). Verification and personalized content also appeared in several articles.

The five most-cited articles (with more than 100 citations each) are from 2010 through 2015. The authors’ names will not surprise you if you have been following this field of study: C. W. Anderson, Mark Coddington, Nicholas Diakopoulos (three articles; two with co-authors).

The authors of the study described above are Luis Mauricio Calvo Rubio and María José Ufarte Ruiz, both of Universidad de Castilla-La Mancha.

Another study of research on AI and journalism

The second study, The application of artificial intelligence to journalism: An analysis of academic production, did not use a specific start date, and ended with articles published in January 2021. The search string used:

"robot journalism" OR "computational journalism" OR "automated journalism" OR ("artificial intelligence" AND "journalism") OR ("artificial intelligence" AND "media")

After eliminating irrelevant articles, 358 were included for review, significantly more than the 209 items in the earlier study. In covering the entire year of 2020, which was not included in the earlier study, these researchers found there was a drop in the number of publications that year. This might be attributed to the global pandemic — although many articles for publication in 2020 would have been submitted in 2019, the processes of peer review and editorial oversight could well have been slowed by the burdens of that first pandemic year. For 2019, 74 articles were found. For 2020, the number was 43.

Like the other study, this one found a significant increase in relevant publications after 2015, but not the same consistently upward trajectory. Less than 13 percent of the items were published before 2015.

As in the other study, here too more than two-thirds of the articles came from Europe and North America. Only articles published in English were included, so this might not accurately represent all the research that exists in this topic area.

Multidisciplinary work “almost always comes from experts working in the same country. Eighty-six percent of the texts reviewed are written by authors whose universities are in the same country, and very often these authors belong to the same university” (page 5).

Six researchers accounted for 15 percent the articles in the sample (in order by number of publications): Nicholas Diakopoulos, Neil Thurman, Seth C. Lewis, Ester Appelgren, Eddy Borges-Rey, and Meredith Broussard. This was interesting to me, as I am not familiar with work by Appelgren or Thurman, while I have read all the others. (Both Appelgren and Thurman have published a lot about data journalism.)

Note, only those six authors have published four or more articles on this topic (within the 358 texts reviewed).

The researchers noted their surprise that so many of the items were “works of an essayistic nature, without either a well-defined methodology or precise research techniques.” Many articles “reflect generalist, introductory, or exploratory approaches.” In more recent publications, they noted “more specific research, with more consistent objectives, methodologies, or developments — and therefore closer to the orthodox research articles usually published in academic journals” (page 6). Qualitative methods predominate.

Based on their analysis of the 358 items, the researchers identified three principal areas for “application of artificial intelligence in journalism”: data journalism, robotic (or automated) news writing, and news verification (including “fake news”). It’s important to note, I think, that applied AI in journalism is not going to include uses of AI by the social media platforms (or search engines), which affect how news is distributed and shared.

Chart by Parratt-Fernández et al. (2021) shows number of articles that included each area of use of AI as a primary, secondary or tertiary topic
Chart above by Parratt-Fernández, Mayoral-Sánchez, & Mera-Fernández (2021) shows areas of use of AI and number of articles that included each area as a primary, secondary or tertiary focus or topic.

Those three principal areas also exclude what is often called personalization, or news recommendation engines, which are applications of AI currently used by many news organizations. Distinct from the ordering and selection of news content by platforms (e.g. Facebook), this technology determines what individual users see in the apps or websites of the news organizations themselves, e.g. Recommended for You: How Newspapers Normalise Algorithmic News Recommendation to Fit Their Gatekeeping Role (2021).

Other prominent topic areas included “the impact of new AI technologies on the writing of journalistic texts” (I’m not sure how that differs from robotic news writing; maybe chatbots? SEO and clickbait?), and “the use of tools that allow information to be extracted and processed — e.g. from social networks — enabling journalists to discover a news event as quickly as possible” (page 7). The latter topic is also called “social media listening” (but not in this research paper). For example, when numerous mentions of an event such as an explosion, or a protest, or police action, start popping up in relation to one geographic location, an AI-trained model can recognize that it’s an unusual occurrence and send an alert to the newsroom.

The amount of academic research on data journalism was high from 2015 to 2017, but it has decreased since then and “experienced a considerable decline in 2020,” the authors noted. It’s kind of funny how data journalism often gets lumped in with artificial intelligence; much of data journalism has absolutely nothing to do with AI.

Ethical issues related to artificial intelligence and journalism have been neglected, according to this study’s findings. “The potential for development in this area is still enormous,” the authors said (page 8).

These researchers anticipate a need for new research on the professional routines and roles of journalists, assuming these will be affected by an increasing integration of AI systems into newswork. These changes will have an impact on journalist training requirements and university curricula as well.

Without falling into hyperbole, the authors speculated that AI represents “the next phase of technological revolution” in an industry that has been successively transformed by computerized page design and printing, internet news distribution, the rise of social media platforms, and viral disinformation campaigns and fake news (page 9).

The authors of the study described above are Sonia Parratt-Fernández, Javier Mayoral-Sánchez, and Montse Mera-Fernández, all of Universidad Complutense de Madrid.

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

The AI teaching assistant

Back in 2016, a professor teaching an online course about artificial intelligence developed a program that he called an AI teaching assistant. The program was given a name (“Jill Watson”) and referred to as “she.” A TEDx Talk video was published that same year.

A 2016 video features Professor Ashok Goel, who developed the “Jill Watson” teaching assistant.

In my recent reading about AI, I’ve found this case mentioned quite often. Sometimes it is generalized to imply that AI teaching assistants are in common use. Another implication is that AI teaching assistants (or even full-fledged AI teachers) are the solution to many challenges in K–12 education.

I wanted to get a better idea of what’s really going on, so I did a search at Google Scholar for “AI teaching assistant” (on March 16, 2022). I got “about 194 results,” which was more than I wanted to look at as search-result pages, so I downloaded 200 results using SerpApi and organized them in a spreadsheet. After eliminating duplicates, I read the titles and the snippets (brief text provided in the search results). I marked all items that appeared relevant — including many that are broadly about AI in education, but eliminating all those focused on how to teach about AI. I ended with 84 articles to examine more closely.

Quite a lot of these refer to the “Jill Watson” program. Many of the articles are speculative, describing potential uses of AI in education (including but not limited to virtual TAs), and contain no empirical research. Few of them could be considered useful for learning about AI teaching assistants — most of the authors have indicated no experience with using any AI teaching assistant themselves, let alone training one or programming one. Thus in most of the articles, the performance of an actual AI teaching assistant was not evaluated and was not even observed.

Kabudi, Pappas and Olsen (2021) conducted a much more rigorous search than mine. They analyzed 147 journal articles and conference presentations (from a total of 1,864 retrieved) about AI-enabled adaptive learning systems, including but not limited to intelligent tutoring systems. The papers were published from 2014 through 2020.

“There are few studies of AI-enabled learning systems implemented in educational settings,” they wrote (p. 2). The authors saw “a discrepancy between what an AI-enabled learning intervention can do and how it is actually utilised in practice. Arguably, users do not understand how to extensively use such systems, or such systems do not actually overcome complex challenges in practice, as the literature claims” (p. 7).

My interest in AI teaching assistants centers on whether I should devote attention to them in a survey course about artificial intelligence as it is used today. My conclusion is that much has been written about the possibilities of using “robot teachers,” intelligent tutoring systems, “teacherbots,” or virtual learning companions — but in fact the appearances of such systems in real classrooms (physical or online) with real students have been very few.

If classrooms are using commercial versions of AI teaching assistants, there is a lack of published research that evaluates the results or the students’ attitudes toward the experience.

Further reading

For an overview of recent research about AI in education, see: AI-enabled adaptive learning systems: A systematic mapping of the literature, an open-access article. This is the study referred to above as Kabudi, Pappas and Olsen (2021).

Another good resource is AI and education: Guidance for policy makers (2021), a 50-page white paper from UNESCO; free download.

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

Beyond drones: Assassination by robot?

A Page One story in Sunday’s New York Times detailed the assassination of a nuclear scientist in Iran in November: The Scientist and the A.I.-Assisted, Remote-Control Killing Machine (published online Sept. 18, 2021). I was taken aback by the phrase “AI-assisted remote-control killing machine” — going for the shock value!

Here’s a sample of the writing about the technology:

“The straight-out-of-science-fiction story of what really happened that afternoon and the events leading up to it, published here for the first time, is based on interviews with American, Israeli and Iranian officials …”

The assassination was “the debut test of a high-tech, computerized sharpshooter kitted out with artificial intelligence and multiple-camera eyes, operated via satellite and capable of firing 600 rounds a minute.”

Unlike a drone, the robotic machine gun draws no attention in the sky, where a drone could be shot down, and can be situated anywhere, qualities likely to reshape the worlds of security and espionage” (boldface mine).

Most of the (lengthy) article is about Iran’s nuclear program and the role of the scientist who was assassinated.

The remote assassination system was built into the bed of a pickup truck, studded with “cameras pointing in multiple directions.” The whole rig was blown up after achieving its objective (although the gun robot was not destroyed as intended).

A crucial point about this setup is to understand the role of humans in the loop. People had to assemble the rig in Iran and drive the truck to its waiting place. A human operator “more than 1,000 miles away” was the actual sniper. The operation depended on satellites transmitting data “at the speed of light” between the truck and the distant humans.

So where does the AI enter into it?

There was an estimated 1.6-second lag between what the cameras saw and what the sniper saw, and a similar lag between the sniper’s actions and the firing of the gun positioned on the rig. There was the physical effect of the recoil of the gun (which affects the bullets’ trajectory). There was the speed of the car in which the nuclear scientist was traveling past the parked rig. “The A.I. was programmed to compensate for the delay, the shake and the car’s speed,” according to the article.

A chilling coda to this story: “Iranian investigators noted that not one of [the bullets] hit [the scientist’s wife], seated inches away, accuracy that they attributed to the use of facial recognition software.”

If you’re familiar with the work of Norbert Wiener (1894–1964), particularly on automated anti-aircraft artillery in World War II, you might be experiencing déjà vu. The very idea of a feedback loop came originally from Wiener’s observations of adjustments that are made as the gun moves in response to the target’s movements. To track and target an aircraft, the aim of the targeting weapon is constantly changing. Its new position continually feeds back into the calculations for when to fire.

The November assassination in Iran is not so much a “straight-out-of-science-fiction story” as it is one more incremental step in computer-assisted surveillance and warfare. An AI system using multiple cameras and calculating satellite lag times, the shaking of the truck and the weapon, and the movement of the target will be using faster computer hardware and more sophisticated algorithms than anything buildable in the 1940s — but its ancestors are real and solid, not imaginary.

Related:

Algorithmic warfare and the reinvention of accuracy (Suchman, 2020)

Killer robots already exist, and they’ve been here a very long time (Ryder, 2019)

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

The need for interdisciplinary AI work

Discussions and claims about artificial intelligence often conflate quite different types of AI systems. People need both to understand and to shape the technology that’s part of their day-to-day lives, but understanding is a challenge when descriptions and terms are used inconsistently — or over-broadly. This idea is part of a 2019 essay titled Artificial Intelligence — The Revolution Hasn’t Happened Yet, published in the Harvard Data Science Review.

“Academia will also play an essential role … in bringing researchers from the computational and statistical disciplines together with researchers from other disciplines whose contributions and perspectives are sorely needed — notably the social sciences, the cognitive sciences, and the humanities,” wrote Michael I. Jordan, whose lengthy job title is Pehong Chen Distinguished Professor in the Department of Electrical Engineering and Computer Science and the Department of Statistics at the University of California, Berkeley.

Jordan’s thoughtful, very readable essay is accompanied by 11 essay-length commentaries by various distinguished people and a rejoinder from Jordan himself.

In one of those commentaries, Barbara J. Grosz emphasized that “Rights of both individuals and society are at stake” in the shaping of technologies and practices built on AI systems. She said researchers and scholars in social science, cognitive science, and the humanities are vital participants in “determining the values and principles that will form the foundation” of a new AI discipline. Grosz is Higgins Research Professor of Natural Sciences at Harvard and the recipient of a lifetime achievement award from the Association for Computational Linguistics.

“When matters of life and well-being are at stake, as they are in systems that affect health care, education, work and justice, AI/ML systems should be designed to complement people, not replace them. They [the AI/ML systems] will need to be smart and to be good teammates,” Grosz wrote.

Concerns about ethical practices in the development of AI systems, in the collection and use of data, and in the deployment and use of technology based on AI systems are not new now, nor were they new in 2019. The idea of having the right mix of people in the room, at the table, however, has recently focused on racial, ethnic, socio-cultural and economic diversity more, perhaps, than on diversity of academic disciplines. Bringing in researchers from outside engineering, statistics, computer science, etc., can surface questions that would never arise in a group consisting only of engineers, statisticians, and computer scientists.

For me, those ideas dovetailed with a book chapter I happened to read on the previous day: “Beyond extraordinary: Theorizing artificial intelligence and the self in daily life,” in A Networked Self and Human Augmentics, Artificial Intelligence, Sentience (2018). Author Andrea L. Guzman wrote that in many senses, AI has become “ordinary” for us — one example is the voice assistants used by so many people in a completely everyday way. Intelligent robots and androids like Star Trek’s Lieutenant Commander Data, or evil world-controlling computer systems like Skynet in the Terminator movies, are part of a view of AI as “extraordinary” — which was the AI imagined for the future, before we had voice assistants and self-driving cars in the real world.

To be clear, there still exists the idea of extraordinary AI, super-intelligence or artificial general intelligence (AGI) — the “strong” AI that does not yet exist (and maybe never will). What Guzman describes is the way people today regard the AI–based tools and systems with which they interact. The AI that is, rather than the AI that might be.

How that connects to what both Jordan and Grosz wrote about interdisciplinary collaboration in AI development is this: Guzman is a journalism professor at Northern Illinois University, and she’s writing about the ways people communicate with a built system. Not interact with it, but communicate with it. When she investigated people’s perceptions and attitudes toward voice assistants, she realized that we don’t think about Siri and Alexa as intelligent devices. I was struck by Guzman’s description of how she initially approached her study and how her own perceptions changed.

“Conceptualizations of who we are in relation to AI, then, have formed around the myth that is AI” (Guzman, 2018, p. 87). “… I was applying a theory of the self that was developed around AI as extraordinary to the study of AI that was situated within the ordinary. The theoretical lens was an inadequate match for my subject” (Guzman, 2018, p. 90).

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

How to educate the public about AI

Two new items related to educating the general public about artificial intelligence:

The A–Z guide comes from the Oxford Internet Institute and Google. It’s slick, pretty, and animated. It consists of exactly 26 short items, one for each letter of the alphabet: artificial intelligence, bias, climate, datasets, ethics, fakes, etc. The aim is to provide answers in a not-overwhelming way.

I love the idea, but I’m not in love with the execution. For example, the neural networks piece tells us that neural nets “attempt to mimic the structure of the brain,” but they “cannot ‘think’ like humans.” That’s great — clear and accurate. We could quibble about “attempt to mimic the structure,” but we can also let that slide. But then:

“AI design teams can assign each piece of a network to recognizing one of many characteristics. The sections of the network then work as one to build an understanding of the relationships and correlations between those elements — working out how they typically fit together and influence each other.”

To me, that seems misleading. It sounds as if the layers of the neural net are directed by specifically programmed instructions, but all my reading has indicated that the layers determine on their own which features they are detecting. (I’m thinking specifically about image recognition and supervised learning here.) This is important because it contributes to the “black box” problem of machine learning systems.

I also dislike phrases such as “build an understanding,” because that implies more intentionality than these networks actually have.

Giving people short, understandable explanations of specific aspects of AI is a wonderful idea, but the explanations need to be both straightforward and true.

The second education item I linked above comes from MIT’s news office. It describes a “new cross-disciplinary research initiative … to promote the understanding and use of AI across all segments of society.”

“People need to be AI-literate to understand the responsible use of AI and create things with it at individual, community, and societal levels.”

—Cynthia Breazeal, MIT professor, director of Responsible AI for Social Empowerment and Education (RAISE)

This sentiment is becoming more widely voiced as claims for the benefits of AI increase in the media. The idea behind RAISE is good and admirable — yes, people in all walks of life should have some understanding of AI, at least as much as they have an understanding of what makes airplanes fly and what makes computers able to store and retrieve our vacation photos.

Oh, wait.

In the United States, the average person’s understanding of any process involving physics or electronics might not be very good. Many students with stellar high-school grades don’t have a solid grasp of how their laptops or phones work at a basic level. I’m not talking about the students who attend MIT, but I am talking about those who can manage high SAT scores and gain admission to top public universities.

The RAISE initiative has identified four strategic areas for research, education, and outreach:

  • Diversity and inclusion in AI
  • AI literacy in pre-K–12 education
  • AI workforce training
  • AI-supported learning

But let’s go back to the A–Z guide and look at the segment about binary code, Zeros & Ones. It tells us that 0’s and 1’s are “the foundational language of computers.” It tells us that a particular long sequence of 0’s and 1’s means “Hello” to a computer. In one sense, that is true — but it really explains nothing to a layman. A computer system doesn’t know what “Hello” is (or means) any more than a rock does.

To accomplish AI literacy, we need to accomplish computer literacy. We need to teach and explain — clearly and accurately — to students at all levels what computers can and cannot do, how they are programmed, and how AI is different from, say, writing a game program that plays tic-tac-toe as well as any human can. I can write and run a winning tic-tac-toe program on an average laptop if I know which algorithms to use in my code — but there’s nothing remotely like intelligence in that program.

We need to add caveats every time we say something like “the computer learns,” or “the system understands.”

It will be fantastic if RAISE (and other outreach programs) can raise the level of computer literacy among Americans. It’s an important goal in this era of AI hype and euphoric claims, because it will be so much easier for people to be duped, exploited, mistreated, sidelined, marginalized, and/or denied jobs, loans, mortgages, healthcare, or admission to universities if they don’t understand what AI is and how it works.

.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

Pastries, cancer cells, and neural networks

The system described in this wonderful New Yorker article from March 2021 is NOT a neural network, and that’s one of the things that make it fascinating. I’ve written before about ImageNet and how neural networks, trained on humongous datasets of labeled digital images, are able to very accurately say what is in a photograph that the system has never “seen” before.

This is different.

This system, developed by a small company in Japan, does not require hundreds or thousands of images of each object it needs to identify precisely because it doesn’t use a neural network. The technologies it uses can be called good old-fashioned AI (GOFAI). Essentially it consists of a collection of manually constructed algorithms.

Above: BakeryScan at work: Screen capture from video (2017)

The system also “learns,” but not in the typical black-box sense of today’s machine learning systems. It is widely used in the checkout systems of Japanese bakeries, which offer a bewilderingly large assortment of pastries and small bread items, many of which look quite similar to one another. BakeryScan was released in 2013; it was 15 years in development.

More recently, the bakery system has been adapted to recognize specific types of cancer cells. The new system is able to “look at an entire microscope slide and identify the cells that might be cancerous” (source: The New Yorker article).

Rather than summarizing the article further, I’m just going to urge you to read it. It’s very much worth your time.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

The companies that are making AI a hot investment

Sometimes I read something that is like a voice out of my own head:

“Artificial intelligence is a buzzword increasingly being used by companies around the world that seek to project themselves at the forefront of cutting-edge research … As the word loses its meaning, it is important for investors to understand what artificial intelligence is and what companies stand to gain from breakthroughs in the new technology.”

Yahoo! Finance, April 12, 2021

That comes from an article titled “10 Best Artificial Intelligence Stocks to Buy for 2021” (link above) but it’s more than just a list of stock tips. It points out that “technology firms with social media services” (e.g. Facebook) are hot because they have the massive datasets that power machine learning about consumers. Companies that make super-fast computer hardware — particularly graphical processing units (GPUs) that crunch through that data — are also good bets (although I’ve heard about growing hardware shortages due to the pandemic).

The article’s author refers to hedge-fund investments as an indicator, which might make me leery about investing my own hard-earned cash, but the list of companies still interested me. Along with hardware manufacturers such as Micron Technology and Nvidia; Amazon, which is valuable for more than only its growing AI expertise; and Alphabet Inc., the parent of Google and DeepMind — the list also includes:

  • Adobe, which is “integrating data-based learning into most of its software through Adobe Sensei, a tool that uses artificial intelligence to improve user experiences across a wide range of Adobe products.”
  • Facebook — this is Yahoo! FInance’s No. 1 pick, and with its deep pockets, Facebook is certainly able to acquire some of the best research minds in AI today. Its efforts are grouped under the Facebook AI label, and the breadth of its work is visible on this page.
  • IBM — this is a recommendation I would argue with. IBM talks a big game in AI, but its failures with IBM Watson Health make me skeptical about its strategies overall.
  • Microsoft, which “has a separate artificial intelligence unit called Microsoft AI that helps users, organizations, and governments across the world with machine learning, data analytics, robotics, and internet of things products.” Just this week, Microsoft to announced a $16 billion cash deal to buy Nuance, which develops AI software including speech-recognition products (Dragon is one). Microsoft pointed to Nuance’s position in the healthcare market as a primary reason for the acquisition.
  • Pinterest, because it is using AI to sort and categorize the millions of images shared by its users and also to “tailor the experiences” of users. Note, news organizations such as The New York Times are also using AI to determine how content is presented to users.
  • Salesforce.com, which “provides customer relationship management services and other enterprise solutions on market automation, data analytics, and application development.” The company markets its AI products under the Einstein brand — see AI use cases from the company. Salesforce acquired Slack Technologies last year.

Notably absent from the list is Apple (although maybe not a great investment, due to its high valuation), which is no newcomer to incorporating AI into its products. Critics might pooh-pooh Apple’s AI clout, but machine learning has been integral to the iPhone, iPad, and Apple Watch for years. Ars Technica published an excellent article about this in mid-2020.

Another absence is the assorted promising startups — particularly those in the climate arena and those founded by alumni of DeepMind, which to me is the most fantastic incubator of AI talent (see AlphaFold) outside the top universities. Just this week, Google put money into one of those startups — founded by a former research engineer at DeepMind, and “focused on reducing greenhouse gas emissions.”

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

Image recognition in medicine: MS subtypes

Machine learning systems for image recognition aren’t always perfect — and neither are AI systems marketed for medical use, whether they use image recognition or not. But here’s an example of image recognition used in a medical context where the system appears to have succeeded at something significant — and it’s something humans can’t do, or at least can’t do well.

“Researchers used the AI tool Subtype and Stage Inference (SuStaIn) to scan the MRI brain scans of 6,322 patients with MS, letting SuStaIn train itself unsupervised. The AI identified 3 previously unknown patterns …” (Pharmacy Times). The model was then tested on MRIs from “a separate independent cohort of 3,068 patients” and successfully identified the three new MS subtypes in them.

Subtype and Stage Inference (SuStaIn) was introduced in this 2018 paper. It is an “unsupervised machine-learning technique that identifies population subgroups with common patterns of disease progression” using MRI images. The original researchers were studying dementia.

Why does it matter? Identifying the subtype of the disease multiple sclerosis (MS) enables doctors to pursue different treatments for them, which might lead to better results for patients.

“While further clinical studies are needed, there was a clear difference, by subtype, in patients’ response to different treatments and in accumulation of disability over time. This is an important step towards predicting individual responses to therapies,” said Dr. Arman Eshaghi, the lead researcher (EurekAlert).

Sources: Artificial Intelligence Weekly newsletter, from The Wall Street Journal; Pharmacy Times; EurekAlert.

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

New AI strategy from U.S. Department of Health and Human Services

The Biden Administration is working hard in a wide range of areas, so maybe it’s no surprise that HHS released this report, titled Artificial Intelligence (AI) Strategy (PDF), this month.

“HHS recognizes that Artificial Intelligence (AI) will be a critical enabler
of its mission
in the future,” it says on the first page of the 7-page document. “HHS will leverage AI to solve previously unsolvable problems,” in part by “scaling trustworthy AI adoption across the Department.”

So HHS is going to be buying some AI products. I wonder what they are (will be), and who makes (or will make) them.

“HHS will leverage AI capabilities to solve complex mission challenges and generate AI-enabled insights to inform efficient programmatic and business decisions” — while to some extent this is typical current business jargon, I’d like to know:

  • Which complex mission challenges? What AI capabilities will be applied, and how?
  • Which programmatic and business decisions? How will AI-enabled insights be applied?

These are the kinds of questions journalists will need to ask when these AI claims are bandied about. Name the system(s), name the supplier(s), give us the science. Link to the relevant research papers.

I think a major concern would be use of any technologies coming from Amazon, Facebook, or Google — but I am no less concerned about government using so-called solutions peddled by business-serving firms such as Deloitte.

The following executive orders (both from the previous administration) are cited in the HHS document:

The department will set up a new HHS AI Council to identify priorities and “identify and foster relationships with public and private entities aligned to priority AI initiatives.” The council will also establish a Community of Practice consisting of AI practitioners (page 5).

Four key focus areas:

  1. An AI-ready workforce and AI culture (includes “broad, department-wide awareness of the potential of AI”)
  2. AI research and development in health and human services (includes grants)
  3. “Democratize foundational AI tools and resources” — I like that, although implementation is where the rubber meets the road. This sentence indicates good aspirations: “Readily accessible tools, data assets, resources, and best practices will be critical to minimizing duplicative AI efforts, increasing reproducibility, and ensuring successful enterprise-wide AI adoption.”
  4. “Promote ethical, trustworthy AI use and development.” Again, a fine statement, but let’s see how they manage to put this into practice.

The four focus areas are summarized in a compact chart (image file).

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.